2023
Xia, L.; Chen, W.; Lu, B.; et al. (2023). Climate mitigation potential of sustainable biochar production in China. Renewable and Sustainable Energy Reviews, 175, Art.-Nr.: 113145. doi:10.1016/j.rser.2023.113145
Friedl, J.; Warner, D.; Wang, W.; et al. (2023). Strategies for mitigating N2O and N2 emissions from an intensive sugarcane cropping system. Nutrient Cycling in Agroecosystems, 125 (2), 295–308. doi:10.1007/s10705-023-10262-4
Lee, H.; Pugh, T. A. M.; Patacca, M.; et al. (2023). Three billion new trees in the EU’s biodiversity strategy: low ambition, but better environmental outcomes?. Environmental Research Letters, 18 (3), Art.-Nr.: 034020. doi:10.1088/1748-9326/acb95c
Zhang, W.; Jung, M.; Migliavacca, M.; et al. (2023). The effect of relative humidity on eddy covariance latent heat flux measurements and its implication for partitioning into transpiration and evaporation. Agricultural and Forest Meteorology, 330, Art.Nr. 109305. doi:10.1016/j.agrformet.2022.109305
Olschewski, P.; Laux, P.; Wei, J.; et al. (2023). An ensemble-based assessment of bias adjustment performance, changes in hydrometeorological predictors and compound extreme events in EAS-CORDEX. Weather and Climate Extremes, 39, Art.-Nr.: 100531. doi:10.1016/j.wace.2022.100531
Polz, J.; Graf, M.; Chwala, C. (2023). Missing Rainfall Extremes in Commercial Microwave Link Data Due To Complete Loss of Signal. Earth and Space Science, 10 (2). doi:10.1029/2022EA002456
Speidel, J.; Vogelmann, H. (2023). Correct(ed) Klett–Fernald algorithm for elastic aerosol backscatter retrievals: a sensitivity analysis. Applied Optics, 62 (4), 861–868. doi:10.1364/AO.465944
Feldmann, D.; Laux, P.; Heckl, A.; et al. (2023). Near surface roughness estimation: A parameterization derived from artificial rainfall experiments and two-dimensional hydrodynamic modelling for multiple vegetation coverages. Journal of Hydrology, 617 (Part A), Art.-Nr.: 128786. doi:10.1016/j.jhydrol.2022.128786
Lapola, D. M.; Pinho, P.; Barlow, J.; et al. (2023). The drivers and impacts of Amazon forest degradation. Science, 379 (6630), Art.-Nr.: eabp8622. doi:10.1126/science.abp8622
Djibo, M.; Ouedraogo, W. Y. S. B.; Doumounia, A.; et al. (2023). Towards Innovative Solutions for Monitoring Precipitation in Poorly Instrumented Regions: Real-Time System for Collecting Power Levels of Microwave Links of Mobile Phone Operators for Rainfall Quantification in Burkina Faso. Applied System Innovation, 6 (1), 4. doi:10.3390/asi6010004
Okello, J.; Bauters, M.; Verbeeck, H.; et al. (2023). Temperature sensitivity of soil organic carbon respiration along a forested elevation gradient in the Rwenzori Mountains, Uganda. Biogeosciences, 20 (3), 719–735. doi:10.5194/bg-20-719-2023
Mortey, E. M.; Annor, T.; Arnault, J.; et al. (2023). Interactions between Climate and Land Cover Change over West Africa. Land, 12 (2), Art.-Nr.: 355. doi:10.3390/land12020355
Zavadilová, I.; Szatniewska, J.; Petrík, P.; et al. (2023). Sap flow and growth response of Norway spruce under long-term partial rainfall exclusion at low altitude. Frontiers in Plant Science, 14, Art.-Nr.: 1089706. doi:10.3389/fpls.2023.1089706
Cañadillas, B.; Wang, S.; Ahlert, Y.; et al. (2023). Coastal horizontal wind speed gradients in the North Sea based on observations and ERA5 reanalysis data. Meteorologische Zeitschrift. doi:10.1127/metz/2022/1166
Xia, L.; Cao, L.; Yang, Y.; et al. (2023). Integrated biochar solutions can achieve carbon-neutral staple crop production. Nature Food. doi:10.1038/s43016-023-00694-0
Srivastava, A. K.; Ewert, F.; Akinwumiju, A. S.; et al. (2023). Cassava yield gap—A model-based assessment in Nigeria. Frontiers in Sustainable Food Systems, 6, Art.-Nr.: 1058775. doi:10.3389/fsufs.2022.1058775
Arab, L.; Hoshika, Y.; Paoletti, E.; et al. (2023). Chronic ozone exposure impairs the mineral nutrition of date palm (Phoenix dactylifera) seedlings. Science of The Total Environment, 862, Art.-Nr.: 160675. doi:10.1016/j.scitotenv.2022.160675
2022
Wiens, M.; Klein, M.; Schultmann, F. (2022). Border Region Attachment: An Empirical Study on Regional Social Capital in the French–German Border Area. CESifo Economic Studies, 68 (4), 362–390. doi:10.1093/cesifo/ifac010
Paleri, S.; Desai, A. R.; Metzger, S.; et al. (2022). Space‐Scale Resolved Surface Fluxes Across a Heterogeneous, Mid‐Latitude Forested Landscape. Journal of Geophysical Research: Atmospheres, 127 (23), Art.Nr:e2022JD037138. doi:10.1029/2022JD037138
Petrovic, D.; Fersch, B.; Kunstmann, H. (2022). Droughts in Germany: performance of regional climate models in reproducing observed characteristics. Natural Hazards and Earth System Sciences, 22 (12), 3875–3895. doi:10.5194/nhess-22-3875-2022
Senatore, A.; Gochis, D. J. J.; Kunstmann, H.; et al. (2022). Preface – special issue on “coupled atmosphere‐hydrological processes: Novel system developments and cross‐compartment evaluations”. Hydrological Processes, 36 (12), Art.Nr. e14780. doi:10.1002/hyp.14780
Yao, Z.; Yan, G.; Ma, L.; et al. (2022). Soil C/N ratio is the dominant control of annual NO fluxes from organic soils of natural and semi-natural ecosystems. Agricultural and Forest Meteorology, 327, Art.Nr. 109198. doi:10.1016/j.agrformet.2022.109198
Piatka, D. R.; Venkiteswaran, J. J.; Uniyal, B.; et al. (2022). Dissolved oxygen isotope modelling refines metabolic state estimates of stream ecosystems with different land use background. Scientific Reports, 12, Art.-Nr.: 10204. doi:10.1038/s41598-022-13219-9
Lesiv, M.; Schepaschenko, D.; Buchhorn, M.; et al. (2022). Global forest management data for 2015 at a 100 m resolution. Scientific Data, 9 (1), 199. doi:10.1038/s41597-022-01332-3
Junkermann, W.; Hacker, J. (2022). Unprecedented levels of ultrafine particles, major sources, and the hydrological cycle. Scientific Reports, 12, Art.-Nr.: 7410. doi:10.1038/s41598-022-11500-5
Laso Bayas, J. C.; See, L.; Georgieva, I.; et al. (2022). Drivers of tropical forest loss between 2008 and 2019. Scientific Data, 9 (1), Artkl.Nr.:146. doi:10.1038/s41597-022-01227-3
Liao, C.; Chen, Y.; Wang, J.; et al. (2022). Disentangling land model uncertainty via Matrix-based Ensemble Model Inter-comparison Platform (MEMIP). Ecological Processes, 11 (1), Art.-Nr.: 14. doi:10.1186/s13717-021-00356-8
See, L.; Georgieva, I.; Duerauer, M.; et al. (2022). A crowdsourced global data set for validating built-up surface layers. Scientific data, 9 (1), 13. doi:10.1038/s41597-021-01105-4
Arnault, J.; Niezgoda, K.; Jung, G.; et al. (2022). Disentangling the Contribution of Moisture Source Change to Isotopic Proxy Signatures: Deuterium Tracing with WRF-Hydro-Iso-Tag and Application to Southern African Holocene Sediment Archives. Journal of Climate, 35 (22), 3855–3879. doi:10.1175/JCLI-D-22-0041.1
Shang, S.; Arnault, J.; Zhu, G.; et al. (2022). Recent Increase of Spring Precipitation over the Three-River Headwaters Region—Water Budget Analysis Based on Global Reanalysis (ERA5) and ET-Tagging Extended Regional Climate Modeling. Journal of Climate, 35 (22), 3599–3617. doi:10.1175/JCLI-D-21-0829.1
Friedlingstein, P.; O’Sullivan, M.; Jones, M. W.; et al. (2022). Global Carbon Budget 2022. Earth System Science Data, 14 (11), 4811–4900. doi:10.5194/essd-14-4811-2022
Grados, D.; Butterbach-Bahl, K.; Chen, J.; et al. (2022). Synthesizing the evidence of nitrous oxide mitigation practices in agroecosystems. Environmental Research Letters, 17 (11), Art.-Nr.: 114024. doi:10.1088/1748-9326/ac9b50
Brown, C.; Seo, B.; Alexander, P.; et al. (2022). Agent‐Based Modeling of Alternative Futures in the British Land Use System. Earth’s Future, 10 (11), Art.: e2022EF002905. doi:10.1029/2022EF002905
Lan, C.; Liu, H.; Katul, G. G.; et al. (2022). Turbulence Structures in the Very Stable Boundary Layer Under the Influence of Wind Profile Distortion. Journal of Geophysical Research: Atmospheres, 127 (20), Art.: e2022JD036565. doi:10.1029/2022JD036565
Blettner, N.; Chwala, C.; Haese, B.; et al. (2022). Combining Commercial Microwave Link and Rain Gauge Observations to Estimate Countrywide Precipitation: A Stochastic Reconstruction and Pattern Analysis Approach. Water Resources Research, 58 (10), Art.: e2022WR032563. doi:10.1029/2022WR032563
Schulz-Stellenfleth, J.; Emeis, S.; Dörenkämper, M.; et al. (2022). Coastal impacts on offshore wind farms – a review focussing on the German Bight area. Meteorologische Zeitschrift, 31 (4), 289–315. doi:10.1127/metz/2022/1109
Vogelmann, H.; Speidel, J.; Perfahl, M.; et al. (2022). Transverse-pumping approach for a powerful single-mode Ti:sapphire laser for near infrared lidar applications. Applied Optics, 61 (29), 8553–8562. doi:10.1364/AO.463257
Desai, A. R.; Paleri, S.; Mineau, J.; et al. (2022). Scaling Land‐Atmosphere Interactions: Special or Fundamental?. Journal of Geophysical Research: Biogeosciences, 127 (10), e2022JG007097. doi:10.1029/2022JG007097
Mousavian, R.; Mashhadi Hossainali, M.; Mashhadi Hossainali, M.; et al. (2022). Copula, a new approach for optimum design of Voxel-based GNSS tropospheric tomography based on the atmospheric dynamics. GPS Solutions, 26 (4), Art.Nr. 149. doi:10.1007/s10291-022-01340-1
Winder, S. G.; Lee, H.; Seo, B.; et al. (2022). An open‐source image classifier for characterizing recreational activities across landscapes. People and Nature, 4 (5), 1249–1262. doi:10.1002/pan3.10382
Gaglio, M.; Pace, R.; Muresan, A. N.; et al. (2022). Species-specific efficiency in PM2.5 removal by urban trees: From leaf measurements to improved modeling estimates. Science of The Total Environment, 844, Artkl.Nr.: 157131. doi:10.1016/j.scitotenv.2022.157131
Bhagat, S. K.; Tiyasha, T.; Al-khafaji, Z.; et al. (2022). Establishment of Dynamic Evolving Neural-Fuzzy Inference System Model for Natural Air Temperature Prediction. Complexity, 2022, Art.Nr. 1047309. doi:10.1155/2022/1047309
Lorenz, M.; Kilchert, F.; Nürnberg, P.; et al. (2022). Local Volume Conservation in Concentrated Electrolytes Is Governing Charge Transport in Electric Fields. The Journal of Physical Chemistry Letters, 13 (37), 8761–8767. doi:10.1021/acs.jpclett.2c02398
Ti, C.; Yan, X.; Xia, L.; et al. (2022). Improving nitrogen safety in China: Nitrogen flows, pollution and control. Frontiers of Agricultural Science and Engineering, 9 (3), 465–474. doi:10.15302/J-FASE-2022454
Ferretto, A.; Matthews, R.; Brooker, R.; et al. (2022). Planetary Boundaries and the Doughnut frameworks: A review of their local operability. Anthropocene, 39, Art.-Nr.: 100347. doi:10.1016/j.ancene.2022.100347
Wangari, E. G.; Mwanake, R. M.; Kraus, D.; et al. (2022). Number of Chamber Measurement Locations for Accurate Quantification of Landscape‐Scale Greenhouse Gas Fluxes: Importance of Land Use, Seasonality, and Greenhouse Gas Type. Journal of Geophysical Research: Biogeosciences, 127 (9), Nr. e2022JG006901. doi:10.1029/2022JG006901
Murray-Tortarolo, G.; Poulter, B.; Vargas, R.; et al. (2022). A Process‐Model Perspective on Recent Changes in the Carbon Cycle of North America. Journal of Geophysical Research: Biogeosciences, 127 (9), e2022JG006904. doi:10.1029/2022JG006904
Vrieling, A.; Fava, F.; Leitner, S.; et al. (2022). Identification of temporary livestock enclosures in Kenya from multi-temporal PlanetScope imagery. Remote Sensing of Environment, 279, Art.-Nr.: 113110. doi:10.1016/j.rse.2022.113110
Yuan, K.; Zhu, Q.; Li, F.; et al. (2022). Causality guided machine learning model on wetland CH emissions across global wetlands. Agricultural and Forest Meteorology, 324, Art.-Nr.: 109115. doi:10.1016/j.agrformet.2022.109115
Merkle, M.; Alexander, P.; Brown, C.; et al. (2022). Downscaling population and urban land use for socio-economic scenarios in the UK. Regional Environmental Change, 22 (3), 106. doi:10.1007/s10113-022-01963-7
Ramm, E.; Liu, C.; Mueller, C. W.; et al. (2022). Alder-induced stimulation of soil gross nitrogen turnover in a permafrost-affected peatland of Northeast China. Soil Biology and Biochemistry, 172, Art.-Nr.: 108757. doi:10.1016/j.soilbio.2022.108757
Krause, J.; Harfoot, M.; Hoeks, S.; et al. (2022). How more sophisticated leaf biomass simulations can increase the realism of modelled animal populations. Ecological Modelling, 471, Artkl.Nr.:110061. doi:10.1016/j.ecolmodel.2022.110061
Wang, R.; Pan, Z.; Liu, Y.; et al. (2022). Full straw incorporation into a calcareous soil increased NO emission despite more NO being reduced to N in the winter crop season. Agriculture, Ecosystems and Environment, 335, Art.Nr. 108007. doi:10.1016/j.agee.2022.108007
Oberpriller, J.; Herschlein, C.; Anthoni, P.; et al. (2022). Climate and parameter sensitivity and induced uncertainties in carbon stock projections for European forests (using LPJ-GUESS 4.0). Geoscientific Model Development, 15 (16), 6495–6519. doi:10.5194/gmd-15-6495-2022
Borne, M.; Lorenz, C.; Portele, T. C.; et al. (2022). Seasonal sub-basin-scale runoff predictions: A regional hydrometeorological Ensemble Kalman Filter framework using global datasets. Journal of Hydrology: Regional Studies, 42, Art.-Nr.: 101146. doi:10.1016/j.ejrh.2022.101146
Estoque, R. C.; Dasgupta, R.; Winkler, K.; et al. (2022). Spatiotemporal pattern of global forest change over the past 60 years and the forest transition theory. Environmental Research Letters, 17 (8), Art.-Nr.: 084022. doi:10.1088/1748-9326/ac7df5
Wan, L.; Lv, H.; Qasim, W.; et al. (2022). Heavy metal and nutrient concentrations in top- and sub-soils of greenhouses and arable fields in East China – Effects of cultivation years, management, and shelter. Environmental Pollution, 307, Art.Nr. 119494. doi:10.1016/j.envpol.2022.119494
Haas, E.; Carozzi, M.; Massad, R. S.; et al. (2022). Long term impact of residue management on soil organic carbon stocks and nitrous oxide emissions from European croplands. Science of The Total Environment, 836, Art.Nr. 154932. doi:10.1016/j.scitotenv.2022.154932
Mwanake, R. M.; Gettel, G. M.; Ishimwe, C.; et al. (2022). Basin‐scale estimates of greenhouse gas emissions from the Mara River, Kenya: Importance of discharge, stream size, and land use/land cover. Limnology and Oceanography, 67 (8), 1776–1793. doi:10.1002/lno.12166
Zheng, Y.; Wu, S.; Xiao, S.; et al. (2022). Global methane and nitrous oxide emissions from inland waters and estuaries. Global Change Biology, 28 (15), 4713–4725. doi:10.1111/gcb.16233
Li, Y.; Feng, H.; Dong, Q.; et al. (2022). Ammoniated straw incorporation increases wheat yield, yield stability, soil organic carbon and soil total nitrogen content. Field Crops Research, 284, Art.-Nr.: 108558. doi:10.1016/j.fcr.2022.108558
Brunn, M.; Hafner, B. D.; Zwetsloot, M. J.; et al. (2022). Carbon allocation to root exudates is maintained in mature temperate tree species under drought. New Phytologist, 235 (3), 965–977. doi:10.1111/nph.18157
Pan, B.; Zhang, Y.; Xia, L.; et al. (2022). Nitrous oxide production pathways in Australian forest soils. Geoderma, 420, Art.-Nr.: 115871. doi:10.1016/j.geoderma.2022.115871
Rehschuh, R.; Ruehr, N. K. (2022). Diverging responses of water and carbon relations during and after heat and hot drought stress in Pinus sylvestris. (D. Tissue, Ed.) Tree Physiology, 42 (8), 1532–1548. doi:10.1093/treephys/tpab141
Maire, J.; Sattar, A.; Henry, R.; et al. (2022). How different COVID-19 recovery paths affect human health, environmental sustainability, and food affordability: a modelling study. The Lancet Planetary Health, 6 (7), e565–e576. doi:10.1016/S2542-5196(22)00144-9
Friedl, J.; Deltedesco, E.; Keiblinger, K. M.; et al. (2022). Amplitude and frequency of wetting and drying cycles drive N and NO emissions from a subtropical pasture. Biology and Fertility of Soils, 58 (5), 593–605. doi:10.1007/s00374-022-01646-9
Rahimi, J.; Fillol, E.; Mutua, J. Y.; et al. (2022). A shift from cattle to camel and goat farming can sustain milk production with lower inputs and emissions in north sub-Saharan Africa’s drylands. Nature Food, 3 (7), 523–531. doi:10.1038/s43016-022-00543-6
Wang, Y.; Yao, Z.; Zheng, X.; et al. (2022). A synthesis of nitric oxide emissions across global fertilized croplands from crop‐specific emission factors. Global Change Biology, 28 (14), 4395–4408. doi:10.1111/gcb.16193
Qasim, W.; Wan, L.; Lv, H.; et al. (2022). Impact of anaerobic soil disinfestation on seasonal NO emissions and N leaching in greenhouse vegetable production system depends on amount and quality of organic matter additions. Science of The Total Environment, 830, Art.-Nr.: 154673. doi:10.1016/j.scitotenv.2022.154673
Shu, X.; He, J.; Zhou, Z.; et al. (2022). Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: A meta-analysis. Science of The Total Environment, 829, Artk.Nr.: 154627. doi:10.1016/j.scitotenv.2022.154627
De Rosa, D.; Biala, J.; Nguyen, T. H.; et al. (2022). Environmental and economic trade‐offs of using composted or stockpiled manure as partial substitute for synthetic fertilizer. Journal of environmental quality, 51 (4), 589–601. doi:10.1002/jeq2.20255
Bliefernicht, J.; Salack, S.; Waongo, M.; et al. (2022). Towards a historical precipitation database for West Africa: Overview, quality control and harmonization. International Journal of Climatology, 42 (7), 4001–4023. doi:10.1002/joc.7467
Dong, N.; Wei, J.; Yang, M.; et al. (2022). Model Estimates of China’s Terrestrial Water Storage Variation Due To Reservoir Operation. Water Resources Research, 58 (6), e2021WR031787. doi:10.1029/2021WR031787
Rousset, C.; Clough, T. J.; Grace, P. R.; et al. (2022). Wetting and drainage cycles in two New Zealand soil types: Effects on relative gas diffusivity and NO emissions. Geoderma Regional, 29, e00504. doi:10.1016/j.geodrs.2022.e00504
Ganzenmüller, R.; Bultan, S.; Winkler, K.; et al. (2022). Land-use change emissions based on high-resolution activity data substantially lower than previously estimated. Environmental Research Letters, 17 (6), 064050. doi:10.1088/1748-9326/ac70d8
Schucknecht, A.; Seo, B.; Krämer, A.; et al. (2022). Estimating dry biomass and plant nitrogen concentration in pre-Alpine grasslands with low-cost UAS-borne multispectral data – a comparison of sensors, algorithms, and predictor sets. Biogeosciences, 19 (10), 2699–2727. doi:10.5194/bg-19-2699-2022
Li, X.; Fang, G.; Wen, X.; et al. (2022). Characteristics analysis of drought at multiple spatiotemporal scale and assessment of CMIP6 performance over the Huaihe River Basin. Journal of Hydrology: Regional Studies, 41, Art.Nr. 101103. doi:10.1016/j.ejrh.2022.101103
Wallace, A. J.; Armstrong, R. D.; Grace, P. R.; et al. (2022). Nitrogen use efficiency and NO emissions vary according to seasonal water supply across different cereal production systems of south eastern Australia. Geoderma Regional, 29, Art.-Nr.: e00498. doi:10.1016/j.geodrs.2022.e00498
Suman, M.; Maity, R.; Kunstmann, H. (2022). Precipitation of Mainland India: Copula‐based bias‐corrected daily CORDEX climate data for both mean and extreme values. Geoscience Data Journal, 9 (1), 58–73. doi:10.1002/gdj3.118
Kraus, D.; Werner, C.; Janz, B.; et al. (2022). Greenhouse Gas Mitigation Potential of Alternate Wetting and Drying for Rice Production at National Scale—A Modeling Case Study for the Philippines. Journal of Geophysical Research: Biogeosciences, 127 (5), e2022JG006848. doi:10.1029/2022JG006848
Seiler, C.; Melton, J. R.; Arora, V. K.; et al. (2022). Are Terrestrial Biosphere Models Fit for Simulating the Global Land Carbon Sink?. Journal of Advances in Modeling Earth Systems, 14 (5), e2021MS002946. doi:10.1029/2021MS002946
Rabin, S. S.; Gérard, F. N.; Arneth, A. (2022). The influence of thinning and prescribed burning on future forest fires in fire-prone regions of Europe. Environmental Research Letters, 17 (5), Artkl.Nr.: 055010. doi:10.1088/1748-9326/ac6312
Ti, C.; Han, X.; Chang, S. X.; et al. (2022). Mitigation of agricultural NH emissions reduces PM pollution in China: A finer scale analysis. Journal of Cleaner Production, 350, Art.-Nr.: 131507. doi:10.1016/j.jclepro.2022.131507
Klaas-Witt, T.; Emeis, S. (2022). The five main influencing factors for lidar errors in complex terrain. Wind Energy Science, 7 (1), 413–431. doi:10.5194/wes-7-413-2022
Preisler, Y.; Hölttä, T.; Grünzweig, J. M.; et al. (2022). The importance of tree internal water storage under drought conditions. (R. Oren, Ed.) Tree Physiology, 42 (4), 771–783. doi:10.1093/treephys/tpab144
Mozaffari, A.; Langguth, M.; Gong, B.; et al. (2022). HPC-oriented Canonical Workflows for Machine Learning Applications in Climate and Weather Prediction. Data Intelligence, 4 (2), 271–285. doi:10.1162/dint_a_00131
Lee, H.; Seo, B.; Cord, A. F.; et al. (2022). Using crowdsourced images to study selected cultural ecosystem services and their relationships with species richness and carbon sequestration. Ecosystem Services, 54, 101411. doi:10.1016/j.ecoser.2022.101411
Smith, P.; Arneth, A.; Barnes, D. K. A.; et al. (2022). How do we best synergize climate mitigation actions to co-benefit biodiversity?. Global Change Biology, 28 (8), 2555–2577. doi:10.1111/gcb.16056
Drugă, B.; Ramm, E.; Szekeres, E.; et al. (2022). Long-term acclimation might enhance the growth and competitive ability of Microcystis aeruginosa in warm environments. Freshwater Biology, 67 (4), 589–602. doi:10.1111/fwb.13865
Li, C.; Budde, M.; Tremper, P.; et al. (2022). SmartAQnet 2020: A New Open Urban Air Quality Dataset from Heterogeneous PM Sensors. ProScience, 8. doi:10.14644/dust2021.001
Amartuvshin, N.; Kim, J.; Cho, N.; et al. (2022). Local and regional steppe vegetation palatability at grazing hotspot areas in Mongolia. Journal of Ecology and Environment, 46, Art.Nr. 08. doi:10.5141/jee.22.009
Dieng, D.; Cannon, A. J.; Laux, P.; et al. (2022). Multivariate Bias‐Correction of High‐Resolution Regional Climate Change Simulations for West Africa: Performance and Climate Change Implications. Journal of Geophysical Research: Atmospheres, 127 (5), e2021JD034836. doi:10.1029/2021JD034836
Kim, D.-G.; Bond-Lamberty, B.; Ryu, Y.; et al. (2022). Ideas and perspectives: Enhancing research and monitoring of carbon pools and land-to-atmosphere greenhouse gases exchange in developing countries. Biogeosciences, 19 (5), 1435–1450. doi:10.5194/bg-19-1435-2022
Zeeman, M.; Holst, C. C.; Kossmann, M.; et al. (2022). Urban Atmospheric Boundary-Layer Structure in Complex Topography: An Empirical 3D Case Study for Stuttgart, Germany. Frontiers in Earth Science, 10, Art.-Nr.: 840112. doi:10.3389/feart.2022.840112
Rummler, T.; Wagner, A.; Arnault, J.; et al. (2022). Lateral terrestrial water fluxes in the LSM of WRF‐Hydro: Benefits of a 2D groundwater representation. Hydrological Processes, 36 (3), Art.-Nr.: e14510. doi:10.1002/hyp.14510
Yue, H.; Liu, C.; Zhang, W.; et al. (2022). How to Improve Cumulative Methane and Nitrous Oxide Flux Estimations of the Non‐Steady‐State Chamber Method?. Journal of Geophysical Research: Biogeosciences, 127 (3), e2021JG006641. doi:10.1029/2021JG006641
Havermann, F.; Ghirardo, A.; Schnitzler, J.-P.; et al. (2022). Modeling Intra‐ and Interannual Variability of BVOC Emissions From Maize, Oil‐Seed Rape, and Ryegrass. Journal of Advances in Modeling Earth Systems, 14 (3), e2021MS002683. doi:10.1029/2021MS002683
Hikino, K.; Danzberger, J.; Riedel, V. P.; et al. (2022). High resilience of carbon transport in long-term drought-stressed mature Norway spruce trees within 2 weeks after drought release. Global Change Biology, 28 (6), 2095–2110. doi:10.1111/gcb.16051
Hornick, T.; Richter, A.; Harpole, W. S.; et al. (2022). An integrative environmental pollen diversity assessment and its importance for the Sustainable Development Goals. Plants People Planet, 4 (2), 110–121. doi:10.1002/ppp3.10234
Hannigan, J. W.; Ortega, I.; Shams, S. B.; et al. (2022). Global Atmospheric OCS Trend Analysis From 22 NDACC Stations. Journal of Geophysical Research: Atmospheres, 127 (4), Art-Nr:e2021JD035764. doi:10.1029/2021JD035764
Janz, B.; Havermann, F.; Lashermes, G.; et al. (2022). Effects of crop residue incorporation and properties on combined soil gaseous NO, NO, and NH emissions—A laboratory-based measurement approach. Science of the Total Environment, 807 (2), Art.-Nr.: 151051. doi:10.1016/j.scitotenv.2021.151051
Redlich, S.; Zhang, J.; Benjamin, C.; et al. (2022). Disentangling effects of climate and land use on biodiversity and ecosystem services—A multi-scale experimental design. Methods in Ecology and Evolution, 13 (2), 514–527. doi:10.1111/2041-210X.13759
Lashermes, G.; Recous, S.; Alavoine, G.; et al. (2022). NO emissions from decomposing crop residues are strongly linked to their initial soluble fraction and early C mineralization. Science of the Total Environment, 806 (4), Art.-Nr.: 150883. doi:10.1016/j.scitotenv.2021.150883
Smerald, A.; Fuchs, K.; Kraus, D.; et al. (2022). Significant Global Yield-Gap Closing Is Possible Without Increasing the Intensity of Environmentally Harmful Nitrogen Losses. Frontiers in Sustainable Food Systems, 6, Art.-Nr.: 736394. doi:10.3389/fsufs.2022.736394
Alexander, P.; Arneth, A.; Henry, R.; et al. (2022). High energy and fertilizer prices are more damaging than food export curtailment from Ukraine and Russia for food prices, health and the environment. Nature Food, 4 (1), 84–95. doi:10.1038/s43016-022-00659-9
Ndiaye, A.; Moussa, M. S.; Dione, C.; et al. (2022). Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations. Energies, 15 (24), Art.-Nr.: 9602. doi:10.3390/en15249602
Achugbu, I. C.; Laux, P.; Olufayo, A. A.; et al. (2022). The impacts of land use and land cover change on biophysical processes in West Africa using a regional climate model experimental approach. International Journal of Climatology, 43 (4), 1731–1755. doi:10.1002/joc.7943
Harmáčková, Z. V.; Pedde, S.; Bullock, J. M.; et al. (2022). Improving regional applicability of the UK shared socioeconomic Pathways through iterative participatory co-design. Climate Risk Management, 37, Artkl.Nr.: 100452. doi:10.1016/j.crm.2022.100452
Petrík, P.; Grote, R.; Gömöry, D.; et al. (2022). The Role of Provenance for the Projected Growth of Juvenile European Beech under Climate Change. Forests, 14 (1), Art.-Nr.: 26. doi:10.3390/f14010026
Junkermann, W. (2022). Ultrafine Particle Emissions in the Mediterranean. Atmospheric Chemistry in the Mediterranean Region. Ed.: F. Dulac. Vol. 2, 105–123, Springer Nature Switzerland AG. doi:10.1007/978-3-030-82385-6_6
Emeis, S.; Fallmann, J. (2022). Unsatisfying Transfer of Climate Research to Urban Planning: The Regulatory Trap in the Triple Helix. Triple Helix, 1–21. doi:10.1163/21971927-bja10035
Ndung’u, P. W.; du Toit, C. J. L.; Takahashi, T.; et al. (2022). A simplified approach for producing Tier 2 enteric-methane emission factors based on East African smallholder farm data. Animal Production Science, 63 (3), 227–236. doi:10.1071/AN22082
Behling, R.; Roessner, S.; Foerster, S.; et al. (2022). Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series. Scientific Reports, 12, Art.-Nr.: 20784. doi:10.1038/s41598-022-24712-6
Adeyeri, O. E.; Zhou, W.; Wang, X.; et al. (2022). The trend and spatial spread of multisectoral climate extremes in CMIP6 models. Scientific Reports, 12, Art.-Nr.: 21000. doi:10.1038/s41598-022-25265-4
Fersch, B.; Kamm, B.; Shehaj, E.; et al. (2022). A comprehensive high resolution data collection for tropospheric water vapor assessment for the Upper Rhine Graben, Germany. doi:10.1594/PANGAEA.936447
Fersch, B.; Wagner, A.; Kamm, B.; et al. (2022). Tropospheric water vapor: a comprehensive high-resolution data collection for the transnational Upper Rhine Graben region. Earth System Science Data, 14 (12), 5287–5307. doi:10.5194/essd-14-5287-2022
Butterbach-Bahl, K.; Kraus, D.; Kiese, R.; et al. (2022). Activity data on crop management define uncertainty of CH and NO emission estimates from rice: A case study of Vietnam. Journal of Plant Nutrition and Soil Science, 185 (6), 793–806. doi:10.1002/jpln.202200382
Colbois, J.; Vanhecke, B.; Vanderstraeten, L.; et al. (2022). Partial lifting of degeneracy in the Ising antiferromagnet on the kagome lattice. Physical Review B, 106 (17), Art.-Nr.: 174403. doi:10.1103/PhysRevB.106.174403
Korir, D.; Marquardt, S.; Eckard, R.; et al. (2022). Weight gain and enteric methane production of cattle fed on tropical grasses. Animal Production Science, 63 (2), 120–132. doi:10.1071/AN21327
Gattmann, M.; McAdam, S. A. M.; Birami, B.; et al. (2022). Anatomical adjustments of the tree hydraulic pathway decrease canopy conductance under long-term elevated CO. Plant Physiology, 191 (1), 252–264. doi:10.1093/plphys/kiac482
Cué Rio, M.; Bovenkerk, B.; Castella, J.-C.; et al. (2022). The elephant in the room is really a cow: using consumption corridors to define sustainable meat consumption in the European Union. Sustainability Science. doi:10.1007/s11625-022-01235-7
Ćelepirović, N.; Bogunović, S.; Dounavi, A.; et al. (2022). Phosphorus Nutrition and Water Relations of European Beech (Fagus sylvatica L.) Saplings Are Determined by Plant Origin. Forests, 13 (10), Art.-Nr.: 1683. doi:10.3390/f13101683
Yang, F.; Du, B.; Burzlaff, T.; et al. (2022). Memory Effects of Water Deprivation in European Beech (Fagus sylvatica L.) and Silver Fir (Abies alba Mill.) Seedlings Grown in Mixed Cultivation. Forests, 13 (10), Art.-Nr.: 1704. doi:10.3390/f13101704
Salack, S.; Sanfo, S.; Sanfo, S.; et al. (2022). Low-cost adaptation options to support green growth in agriculture, water resources, and coastal zones. Scientific Reports, 12 (1), 1–16. doi:10.1038/s41598-022-22331-9
Xu, W.; Zhang, M.; Hu, Z.; et al. (2022). Spatial and temporal heterogeneity of tropical cyclone precipitation over China from 1959 to 2018. Frontiers in Environmental Science, 10, Art.-Nr.: 984395. doi:10.3389/fenvs.2022.984395
Kunz, M.; Abbas, S. S.; Bauckholt, M.; et al. (2022). Swabian MOSES 2021: An interdisciplinary field campaign for investigating convective storms and their event chains. Frontiers in Earth Science, 10, Art.Nr. 999593. doi:10.3389/feart.2022.999593
Schreiber, M.; Bazaios, E.; Ströbel, B.; et al. (2022). Impacts of slurry acidification and injection on fertilizer nitrogen fates in grassland. Nutrient Cycling in Agroecosystems, 125 (2), 171–186. doi:10.1007/s10705-022-10239-9
Petrík, P.; Zavadilová, I.; Šigut, L.; et al. (2022). Impact of Environmental Conditions and Seasonality on Ecosystem Transpiration and Evapotranspiration Partitioning (T/ET Ratio) of Pure European Beech Forest. Water, 14 (19), Art.-Nr.: 3015. doi:10.3390/w14193015
Boeing, F.; Rakovec, O.; Kumar, R.; et al. (2022). High-resolution drought simulations and comparison to soil moisture observations in Germany. Hydrology and Earth System Sciences, 26 (19), 5137–5161. doi:10.5194/hess-26-5137-2022
Zhang, M.; Xu, W.; Hu, Z.; et al. (2022). Projection of future climate change in the Poyang Lake Basin of China under the global warming of 1.5–3°C. Frontiers in Environmental Science, 10, Art.Nr. 985145. doi:10.3389/fenvs.2022.985145
Bastos, A.; Ciais, P.; Sitch, S.; et al. (2022). On the use of Earth Observation to support estimates of national greenhouse gas emissions and sinks for the Global stocktake process: lessons learned from ESA-CCI RECCAP2. Carbon Balance and Management, 17 (1), Art.Nr. 15. doi:10.1186/s13021-022-00214-w
Mahnken, M.; Cailleret, M.; Collalti, A.; et al. (2022). Accuracy, realism and general applicability of European forest models. Global Change Biology, 28 (23), 6921–6943. doi:10.1111/gcb.16384
Lam, S. K.; Xia, L.; Chen, D. (2022). Boosting the benefits of compost. Nature Food, 3 (9), 682–683. doi:10.1038/s43016-022-00597-6
Franco-Luesma, S.; Lafuente, V.; Alonso-Ayuso, M.; et al. (2022). Maize diversification and nitrogen fertilization effects on soil nitrous oxide emissions in irrigated mediterranean conditions. Frontiers in Environmental Science, 10, Art.Nr. 914851. doi:10.3389/fenvs.2022.914851
Pace, R.; Chiocchini, F.; Sarti, M.; et al. (2022). Integrating Copernicus land cover data into the i-Tree Cool Air model to evaluate and map urban heat mitigation by tree cover. European Journal of Remote Sensing. doi:10.1080/22797254.2022.2125833
Zhao, Y.; Lin, S.; Lv, H.; et al. (2022). Increasing the Environmental Sustainability of Greenhouse Vegetable Production by Combining Biochar Application and Drip Fertigation—Effects on Soil NO Emissions and Carbon Sequestrations. Agronomy, 12 (7), Art.-Nr.: 1661. doi:10.3390/agronomy12071661
Godin-Beekmann, S.; Azouz, N.; Sofieva, V. F.; et al. (2022). Updated trends of the stratospheric ozone vertical distribution in the 60° S–60° N latitude range based on the LOTUS regression model. Atmospheric Chemistry and Physics, 22 (17), 11657–11673. doi:10.5194/acp-22-11657-2022
Martín Belda, D.; Anthoni, P.; Wårlind, D.; et al. (2022). LPJ-GUESS/LSMv1.0: a next-generation land surface model with high ecological realism. Geoscientific Model Development, 15 (17), 6709–6745. doi:10.5194/gmd-15-6709-2022
Hikino, K.; Danzberger, J.; Riedel, V. P.; et al. (2022). Dynamics of initial carbon allocation after drought release in mature Norway spruce—Increased belowground allocation of current photoassimilates covers only half of the carbon used for fine‐root growth. Global Change Biology, 28 (23), 6889–6905. doi:10.1111/gcb.16388
O’Sullivan, M.; Friedlingstein, P.; Sitch, S.; et al. (2022). Process-oriented analysis of dominant sources of uncertainty in the land carbon sink. Nature Communications, 13 (1), Art.-Nr.: 4781. doi:10.1038/s41467-022-32416-8
Robinson, D. T.; van Vliet, J.; Brown, C.; et al. (2022). Identifying data challenges to representing human decision-making in large-scale land-use models. Mapping and Forecasting Land Use, 115–126, Elsevier. doi:10.1016/B978-0-323-90947-1.00013-2
Lorenz, M.; Bliefernicht, J.; Kunstmann, H. (2022). Bias correction of daily precipitation for ungauged locations using geostatistical approaches: A case study for the CORDEX‐Africa ensemble. International Journal of Climatology, 42 (12), 6596–6615. doi:10.1002/joc.7649
Heistermann, M.; Bogena, H.; Francke, T.; et al. (2022). Soil moisture observation in a forested headwater catchment: combining a dense cosmic-ray neutron sensor network with roving and hydrogravimetry at the TERENO site Wüstebach. Earth System Science Data, 14 (5), 2501–2519. doi:10.5194/essd-14-2501-2022
Wanner, L.; Calaf, M.; Mauder, M. (2022). Incorporating the effect of heterogeneous surface heating into a semi-empirical model of the surface energy balance closure. PLOS ONE, 17 (6), e0268097. doi:10.1371/journal.pone.0268097
Xu, W.; Lei, X.; Chen, S.; et al. (2022). How Well Does the ERA5 Reanalysis Capture the Extreme Climate Events Over China? Part II: Extreme Temperature. Frontiers in Environmental Science, 10, Art.-Nr.: 921659. doi:10.3389/fenvs.2022.921659
Lei, X.; Xu, W.; Chen, S.; et al. (2022). How Well Does the ERA5 Reanalysis Capture the Extreme Climate Events Over China? Part I: Extreme Precipitation. Frontiers in Environmental Science, 10, Art.Nr. 921658. doi:10.3389/fenvs.2022.921658
Fluhrer, A.; Jagdhuber, T.; Tabatabaeenejad, A.; et al. (2022). Remote Sensing of Complex Permittivity and Penetration Depth of Soils Using P-Band SAR Polarimetry. Remote Sensing, 14 (12), Art.Nr. 2755. doi:10.3390/rs14122755
Rausch, T.; Cañadillas, B.; Hampel, O.; et al. (2022). Wind Lidar and Radiosonde Measurements of Low-Level Jets in Coastal Areas of the German Bight. Atmosphere, 13 (5), Art.Nr. 839. doi:10.3390/atmos13050839
Jana, A.; Jat, M. K.; Saxena, A.; et al. (2022). Prediction of land use land cover changes of a river basin using the CA-Markov model. Geocarto International, 37 (26), 14127–14147. doi:10.1080/10106049.2022.2086634
Lin, D.; Katurji, M.; Revell, L. E.; et al. (2022). Fog type classification using a modified Richardson number for Christchurch, New Zealand. International Journal of Climatology, 43 (1), 314–330. doi:10.1002/joc.7761
Noël, S.; Reuter, M.; Buchwitz, M.; et al. (2022). Retrieval of greenhouse gases from GOSAT and GOSAT-2 using the FOCAL algorithm. Atmospheric Measurement Techniques, 15 (11), 3401–3437. doi:10.5194/amt-15-3401-2022
Fawcett, D.; Cunliffe, A. M.; Sitch, S.; et al. (2022). Assessing Model Predictions of Carbon Dynamics in Global Drylands. Frontiers in Environmental Science, 10, Art.-Nr.: 790200. doi:10.3389/fenvs.2022.790200
Rubin, Y.; Rostkier-Edelstein, D.; Chwala, C.; et al. (2022). Challenges in Diurnal Humidity Analysis from Cellular Microwave Links (CML) over Germany. Remote Sensing, 14 (10), Art.-Nr.: 2353. doi:10.3390/rs14102353
Friedlingstein, P.; Jones, M. W.; O’Sullivan, M.; et al. (2022). Global Carbon Budget 2021. Earth System Science Data, 14 (4), 1917–2005. doi:10.5194/essd-14-1917-2022
Whitehorn, P. R.; Seo, B.; Comont, R. F.; et al. (2022). The effects of climate and land use on British bumblebees: Findings from a decade of citizen‐science observations. Journal of Applied Ecology, 59 (7), 1837–1851. doi:10.1111/1365-2664.14191
Pretzsch, H.; Río, M. del; Grote, R.; et al. (2022). Tracing drought effects from the tree to the stand growth in temperate and Mediterranean forests: insights and consequences for forest ecology and management. European Journal of Forest Research, 141, 727–751. doi:10.1007/s10342-022-01451-x
Takeda, N.; Friedl, J.; Kirkby, R.; et al. (2022). Interaction between soil and fertiliser nitrogen drives plant nitrogen uptake and nitrous oxide (NO) emissions in tropical sugarcane systems. Plant and Soil, 477, 647–663. doi:10.1007/s11104-022-05458-6
Xing, Z.; Yu, Z.; Wei, J.; et al. (2022). Lagged influence of ENSO regimes on droughts over the Poyang Lake basin, China. Atmospheric Research, 275, Art.-Nr.: 106218. doi:10.1016/j.atmosres.2022.106218
Ma, J.; Rabin, S. S.; Anthoni, P.; et al. (2022). Assessing the impacts of agricultural managements on soil carbon stocks, nitrogen loss, and crop production – a modelling study in eastern Africa. Biogeosciences, 19 (8), 2145–2169. doi:10.5194/bg-19-2145-2022
Ghirardo, A.; Blande, J. D.; Ruehr, N. K.; et al. (2022). Editorial: Adaptation of Trees to Climate Change: Mechanisms Behind Physiological and Ecological Resilience and Vulnerability. Frontiers in Forests and Global Change, 4, Art.-Nr.: 831701. doi:10.3389/ffgc.2021.831701
Döscher, R.; Acosta, M.; Alessandri, A.; et al. (2022). The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geoscientific Model Development, 15 (7), 2973–3020. doi:10.5194/gmd-15-2973-2022
Wagner, A.; Fersch, B.; Yuan, P.; et al. (2022). Assimilation of GNSS and Synoptic Data in a Convection Permitting Limited Area Model: Improvement of Simulated Tropospheric Water Vapor Content. Frontiers in Earth Science, 10, Art.Nr. 869504. doi:10.3389/feart.2022.869504
Scheer, C.; Rowlings, D. W.; Antille, D. L.; et al. (2022). Improving nitrogen use efficiency in irrigated cotton production. Nutrient Cycling in Agroecosystems, 125 (2), 95–106. doi:10.1007/s10705-022-10204-6
Vandenbussche, S.; Langerock, B.; Vigouroux, C.; et al. (2022). Nitrous Oxide Profiling from Infrared Radiances (NOPIR): Algorithm Description, Application to 10 Years of IASI Observations and Quality Assessment. Remote Sensing, 14 (8), Art.Nr. 1810. doi:10.3390/rs14081810
Sokhi, R. S.; Moussiopoulos, N.; Baklanov, A.; et al. (2022). Advances in air quality research – current and emerging challenges. Atmospheric Chemistry and Physics, 22 (7), 4615–4703. doi:10.5194/acp-22-4615-2022
Bliefernicht, J.; Rauch, M.; Laux, P.; et al. (2022). Atmospheric circulation patterns that trigger heavy rainfall in West Africa. International Journal of Climatology, 42 (12), 6515–6536. doi:10.1002/joc.7613
Reinermann, S.; Gessner, U.; Asam, S.; et al. (2022). Detection of Grassland Mowing Events for Germany by Combining Sentinel-1 and Sentinel-2 Time Series. Remote Sensing, 14 (7), Artkl.Nr.: 1647. doi:10.3390/rs14071647
Cui, X.; Shang, Z.; Xia, L.; et al. (2022). Deceleration of Cropland-NO Emissions in China and Future Mitigation Potentials. Environmental Science and Technology, 56 (7), 4665–4675. doi:10.1021/acs.est.1c07276
Abalos, D.; Recous, S.; Butterbach-Bahl, K.; et al. (2022). A review and meta-analysis of mitigation measures for nitrous oxide emissions from crop residues. Science of the Total Environment, 828, Art.-Nr.: 154388. doi:10.1016/j.scitotenv.2022.154388
Zhang, B.; Zhou, M.; Zhu, B.; et al. (2022). Soil clay minerals: An overlooked mediator of gross N transformations in Regosolic soils of subtropical montane landscapes. Soil Biology and Biochemistry, 168, Art.-Nr.: 108612. doi:10.1016/j.soilbio.2022.108612
Srivastava, A. K.; Safaei, N.; Khaki, S.; et al. (2022). Winter wheat yield prediction using convolutional neural networks from environmental and phenological data. Scientific Reports, 12 (1), Art.-Nr.: 3215. doi:10.1038/s41598-022-06249-w
Bogena, H. R.; Schrön, M.; Jakobi, J.; et al. (2022). COSMOS-Europe: a European network of cosmic-ray neutron soil moisture sensors. Earth System Science Data, 14 (3), 1125–1151. doi:10.5194/essd-14-1125-2022
Lembrechts, J. J.; Hoogen, J.; Aalto, J.; et al. (2022). Global maps of soil temperature. Global Change Biology, 28 (9), 3110–3144. doi:10.1111/gcb.16060
Shin, Y.-J.; Midgley, G. F.; Archer, E. R. M.; et al. (2022). Actions to halt biodiversity loss generally benefit the climate. Global Change Biology, 28 (9), 2846–2874. doi:10.1111/gcb.16109
Thom, D.; Rammer, W.; Laux, P.; et al. (2022). Will forest dynamics continue to accelerate throughout the 21st century in the Northern Alps?. Global Change Biology, 28 (10), 3260–3274. doi:10.1111/gcb.16133
Morrison, T.; Pardyjak, E. R.; Mauder, M.; et al. (2022). The Heat-Flux Imbalance: The Role of Advection and Dispersive Fluxes on Heat Transport Over Thermally Heterogeneous Terrain. Boundary-Layer Meteorology, 183 (2), 227–247. doi:10.1007/s10546-021-00687-1
Adeyeri, O. E.; Laux, P.; Ishola, K. A.; et al. (2022). Homogenising meteorological variables: Impact on trends and associated climate indices. Journal of Hydrology, 607, Art.-Nr.: 127585. doi:10.1016/j.jhydrol.2022.127585
Urban, M. C.; Travis, J. M. J.; Zurell, D.; et al. (2022). Corrigendum: Coding for Life: Designing a Platform for Projecting and Protecting Global Biodiversity. BioScience, 72 (1), 91–104. doi:10.1093/biosci/biab127
Henry, R. C.; Arneth, A.; Jung, M.; et al. (2022). Global and regional health and food security under strict conservation scenarios. Nature Sustainability, 5, 303–310. doi:10.1038/s41893-021-00844-x
Ma, J.; Olin, S.; Anthoni, P.; et al. (2022). Modeling symbiotic biological nitrogen fixation in grain legumes globally with LPJ-GUESS (v4.0, r10285). Geoscientific Model Development, 15 (2), 815–839. doi:10.5194/gmd-15-815-2022
Emeis, S. (2022). Analysis of Some Major Limitations of Analytical Top-Down Wind-Farm Models. Boundary-Layer Meteorology. doi:10.1007/s10546-021-00684-4
Ndung’u, P. W.; Takahashi, T.; Toit, C. J. L. du; et al. (2022). Farm-level emission intensities of smallholder cattle (Bos indicus; B. indicus–B. taurus crosses) production systems in highlands and semi-arid regions. Animal, 16 (1), Art.-Nr.: 100445. doi:10.1016/j.animal.2021.100445
Kondo, M.; Sitch, S.; Ciais, P.; et al. (2022). Are Land-Use Change Emissions in Southeast Asia Decreasing or Increasing?. Global Biogeochemical Cycles, 36 (1), Art-Nr:e2020GB006909. doi:10.1029/2020GB006909
Nourani, V.; Khodkar, K.; Paknezhad, N. J.; et al. (2022). Deep learning-based uncertainty quantification of groundwater level predictions. Stochastic Environmental Research and Risk Assessment, 36 (10), 3081–3107. doi:10.1007/s00477-022-02181-7
Pan, B.; Xia, L.; Lam, S. K.; et al. (2022). A global synthesis of soil denitrification: Driving factors and mitigation strategies. Agriculture, Ecosystems and Environment, 327, Art.-Nr.: 107850. doi:10.1016/j.agee.2021.107850
Vogl, S.; Laux, P.; Bialas, J.; et al. (2022). Modelling Precipitation Intensities from X-Band Radar Measurements Using Artificial Neural Networks—A Feasibility Study for the Bavarian Oberland Region. Water (Switzerland), 14 (3), Art.-Nr.: 276. doi:10.3390/w14030276
Barthel, M.; Bauters, M.; Baumgartner, S.; et al. (2022). Low NO and variable CH fluxes from tropical forest soils of the Congo Basin. Nature Communications, 13 (1), Art.-Nr.: 330. doi:10.1038/s41467-022-27978-6
Taylor, T. E.; O’Dell, C. W.; Crisp, D.; et al. (2022). An 11-year record of XCO₂ estimates derived from GOSAT measurements using the NASA ACOS version 9 retrieval algorithm. Earth system science data, 14 (1), 325–360. doi:10.5194/essd-14-325-2022
Wassmann, R.; Van-Hung, N.; Yen, B. T.; et al. (2022). Carbon Footprint Calculator Customized for Rice Products: Concept and Characterization of Rice Value Chains in Southeast Asia. Sustainability (Switzerland), 14 (1), 315. doi:10.3390/su14010315
Muller, J.; De Rosa, D.; Friedl, J.; et al. (2022). Combining nitrification inhibitors with a reduced N rate maintains yield and reduces NO emissions in sweet corn. Nutrient Cycling in Agroecosystems, 125 (2), 107–121. doi:10.1007/s10705-021-10185-y
Ramm, E.; Liu, C.; Ambus, P.; et al. (2022). A review of the importance of mineral nitrogen cycling in the plant-soil-microbe system of permafrost-affected soils—changing the paradigm. Environmental research letters, 17 (1), 013004. doi:10.1088/1748-9326/ac417e
Abalos, D.; Rittl, T. F.; Recous, S.; et al. (2022). Predicting field NO emissions from crop residues based on their biochemical composition: A meta-analytical approach. Science of the Total Environment, 812, Art.-Nr.: 152532. doi:10.1016/j.scitotenv.2021.152532
Yu, H.; Zhang, G.; Xia, L.; et al. (2022). Elevated CO does not necessarily enhance greenhouse gas emissions from rice paddies. Science of the Total Environment, 810, Art.-Nr.: 152363. doi:10.1016/j.scitotenv.2021.152363
Arab, L.; Seegmueller, S.; Kreuzwieser, J.; et al. (2022). Significance of current weather conditions for foliar traits of old-growth sessile oak (Quercus petraea Liebl) trees. Trees - Structure and Function, 36, 777–791. doi:10.1007/s00468-021-02249-x
Wei, J.; Zhang, X.; Xia, L.; et al. (2022). Role of chemical reactions in the nitrogenous trace gas emissions and nitrogen retention: A meta-analysis. Science of the Total Environment, 808, Art.-Nr.: 152141. doi:10.1016/j.scitotenv.2021.152141
Nguyen, D. H.; Grace, P. R.; Rowlings, D. W.; et al. (2022). The fate of urea ¹⁵N in a subtropical rain-fed maize system: influence of organic amendments. Soil research, 60 (3), 252–261. doi:10.1071/SR21101
Wolz, K.; Leitner, S.; Merbold, L.; et al. (2022). Enteric methane emission estimates for Kenyan cattle in a nighttime enclosure using a backward Lagrangian Stochastic dispersion technique. Theoretical and Applied Climatology, 147, 1091–1103. doi:10.1007/s00704-021-03868-7
Qasim, W.; Zhao, Y.; Wan, L.; et al. (2022). The potential importance of soil denitrification as a major N loss pathway in intensive greenhouse vegetable production systems. Plant and Soil, 471, 157–174. doi:10.1007/s11104-021-05187-2
Zhang, Z.; Arnault, J.; Laux, P.; et al. (2022). Convection-permitting fully coupled WRF-Hydro ensemble simulations in high mountain environment: impact of boundary layer- and lateral flow parameterizations on land–atmosphere interactions. Climate Dynamics, 59, 1355–1376. doi:10.1007/s00382-021-06044-9
Yan, X.; Xia, L.; Ti, C. (2022). Temporal and spatial variations in nitrogen use efficiency of crop production in China. Environmental Pollution, 293, Art.-Nr.: 118496. doi:10.1016/j.envpol.2021.118496
Urban, M. C.; Travis, J. M. J.; Zurell, D.; et al. (2022). Coding for Life: Designing a Platform for Projecting and Protecting Global Biodiversity. BioScience, 72 (1), 91–104. doi:10.1093/biosci/biab099
Platis, A.; Hundhausen, M.; Lampert, A.; et al. (2022). The Role of Atmospheric Stability and Turbulence in Offshore Wind-Farm Wakes in the German Bight. Boundary-Layer Meteorology, 182, 441–469. doi:10.1007/s10546-021-00668-4
2021
Gao, L.; Deng, H.; Lei, X.; et al. (2021). Evidence of elevation-dependent warming from the Chinese Tian Shan. Cryosphere, 15 (12), 5765–5783. doi:10.5194/tc-15-5765-2021
Xia, L.; Lam, S. K.; Kiese, R.; et al. (2021). Elevated CO negates O impacts on terrestrial carbon and nitrogen cycles. One Earth, 4 (12), 1752–1763. doi:10.1016/j.oneear.2021.11.009
Mauder, M.; Ibrom, A.; Wanner, L.; et al. (2021). Options to correct local turbulent flux measurements for large-scale fluxes using an approach based on large-eddy simulation. Atmospheric Measurement Techniques, 14 (12), 7835–7850. doi:10.5194/amt-14-7835-2021
Larbi, I.; Hountondji, F. C. C.; Dotse, S.-Q.; et al. (2021). Local climate change projections and impact on the surface hydrology in the Vea catchment, West Africa. Hydrology Research, 52 (6), 1200–1215. doi:10.2166/NH.2021.096
Zhang, Z.; Arnault, J.; Laux, P.; et al. (2021). Diurnal cycle of surface energy fluxes in high mountain terrain: High-resolution fully coupled atmosphere-hydrology modelling and impact of lateral flow. Hydrological Processes, 35 (12), Art.-Nr. e14454. doi:10.1002/hyp.14454
Pastorello, G.; Trotta, C.; Canfora, E.; et al. (2021). Author Correction: The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific data, 8 (1), 72. doi:10.1038/s41597-021-00851-9
Zhu, Y.; Butterbach-Bahl, K.; Merbold, L.; et al. (2021). Nitrous oxide emission factors for cattle dung and urine deposited onto tropical pastures: A review of field-based studies. Agriculture, Ecosystems and Environment, 322, Art.-Nr.: 107637. doi:10.1016/j.agee.2021.107637
Portele, T. C.; Lorenz, C.; Dibrani, B.; et al. (2021). Seasonal forecasts offer economic benefit for hydrological decision making in semi-arid regions. Scientific reports, 11 (1), Art.-Nr.: 10581. doi:10.1038/s41598-021-89564-y
Winkler, K.; Fuchs, R.; Rounsevell, M.; et al. (2021). Global land use changes are four times greater than previously estimated. Nature Communications, 12 (1), Artikel-Nr.: 2501. doi:10.1038/s41467-021-22702-2
Emeis, S.; Wilbert, S. (2021). Measurement Systems for Wind, Solar and Hydro Power Applications. Springer Handbook of Atmospheric Measurements. Ed.: T. Foken, 1369–1390, Springer International Publishing. doi:10.1007/978-3-030-52171-4_51
Emeis, S. (2021). Sodar and RASS. Springer Handbook of Atmospheric Measurements. Ed.: T. Foken, 661–682, Springer International Publishing. doi:10.1007/978-3-030-52171-4_23
Rahimi, J.; Haas, E.; Grote, R.; et al. (2021). Beyond livestock carrying capacity in the Sahelian and Sudanian zones of West Africa. Scientific reports, 11, Article no: 22094. doi:10.1038/s41598-021-01706-4
Cade, S. M.; Clemitshaw, K. C.; Molina-Herrera, S.; et al. (2021). Evaluation of LandscapeDNDC Model Predictions of CO and NO Fluxes from an Oak Forest in SE England. Forests, 12 (11), 1517. doi:10.3390/f12111517
Ma, L.; Zhang, W.; Zheng, X.; et al. (2021). Attempt to correct grassland N2O fluxes biased by the DN-based opaque static chamber measurement. Atmospheric environment, 264, Art. Nr.: 118687. doi:10.1016/j.atmosenv.2021.118687
Metzger, S.; Durden, D.; Paleri, S.; et al. (2021). Novel approach to observing system simulation experiments improves information gain of surface-atmosphere field measurements. Atmospheric Measurement Techniques, 14 (11), 6929–6954. doi:10.5194/amt-14-6929-2021
Jägermeyr, J.; Müller, C.; Ruane, A. C.; et al. (2021). Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nature Food, 2, 873–885. doi:10.1038/s43016-021-00400-y
Schäfer, K.; Budde, M.; Cyrys, J.; et al. (2021). Hochaufgelöste Erfassung der urbanen Feinstaubbelastung mittels Messnetz aus kostengünstigen Sensoren und numerischen Simulationen. Gefahrstoffe, Reinhaltung der Luft, 81 (9-10), 353–361.
Arneth, A.; Olsson, L.; Cowie, A.; et al. (2021). Restoring Degraded Lands. Annual review of environment and resources, 46, 569–599. doi:10.1146/annurev-environ-012320-054809
Mitchell, E.; Scheer, C.; Rowlings, D.; et al. (2021). Important constraints on soil organic carbon formation efficiency in subtropical and tropical grasslands. Global change biology, 27 (20), 5383–5391. doi:10.1111/gcb.15807
Lei, X.; Gao, L.; Ma, M.; et al. (2021). Does non-stationarity of extreme precipitation exist in the Poyang Lake Basin of China?. Journal of Hydrology: Regional Studies, 37, Art.-Nr.: 100920. doi:10.1016/j.ejrh.2021.100920
Prestele, R.; Brown, C.; Polce, C.; et al. (2021). Large variability in response to projected climate and land‐use changes among European bumblebee species. Global change biology, 27 (19), 4530–4545. doi:10.1111/gcb.15780
Albrecht, J.; Peters, M. K.; Becker, J. N.; et al. (2021). Species richness is more important for ecosystem functioning than species turnover along an elevational gradient. Nature Ecology and Evolution, 5, 1582–1593. doi:10.1038/s41559-021-01550-9